Kategórie
Zo zahraničia

Aké fotovoltaické panely najčastejšie kupujú inštalátori v Nemecku?

Aké fotovoltaické panaly najčastejšie kupujú inštalátori v Nemecku? Tu sú výsledky 8. edície každoročnej správy o európskom trhu inštalatérov fotovoltaických systémov nazvanej: European PV InstallerMonitor 2015/2016.

EuPD Research medzi hlavnými závermi posledného výskumu európskeho trhu PV uvádza pokles – v porovnaní s rokom 2014 – priamych nákupov komponentov PV od výrobcov. V prípade Nemecka percento inštalátorov, ktorí kupujú moduly a meniče priamo od výrobcov, kleslo zo 44 % v roku 2014 na 37 %.

Čítať viac

Kategórie
Zo zahraničia

Vo Francúzsku solárne panely pokryjú 1 000 kilometrov ciest

Francúzska vláda plánuje pokryť 1 000 km ciest solárnymi panelmi, ktoré zafinancuje zvýšenou daňou za benzín.

Takéto množstvo solárnych článkov dokáže vyrobiť dostatok elektrickej energie pre päť miliónov občanov, čo pre porovnanie teda predstavuje skoro celú Slovenskú republiku.

Použité panely Wattway boli predstavené v októbri minulého roku spoločnosťou Colas Group, ktorá na ich vývoji pracovala približne päť rokov. Problémy by im tak nemali robiť ani ťažké nákladné vozidlá. Navyše, ich povrch je dosť drsný na to, aby mali autá dostatočnú trakciu a nešmýkali sa.

Čítať viac

Kategórie
Zo zahraničia

Železničné stanice napájané zo solárnych batérií

Začali sa testy solárnych batérií, ktoré môžu napájať železničné stanice. Tri inštalácie boli inštalované v roku 2015 na budovách PLK (poľská železničná spoločnosť) v Nowom Sączi. Správca infraštruktúry touto cestou skúma možnosť, ako získavať energiu z obnoviteľných zdrojov. Prvé testy dovoľujú usudzovať, že elektrická energia získaná týmto spôsobom zaistí napájanie malých a stredných železničných staníc, ako napr. Zakopané.

Celý článok: http://www.solarnenovinky.sk/zo-sveta/2016/01/25/zeleznicne-stanice-solarne-baterie

Kategórie
Zo zahraničia

Vedci z MIT riešia účinnejšiu produkciu i skladovanie solárnej energie

V prvých dňoch nového roka vedci z Massachusetts Institute of Technology (MIT) pustili do sveta hneď niekoľko správ týkajúcich sa vývoja noviniek v sektore solárnej energie. Výskumníci chcú dosiahnuť zvýšenie celkovej účinnosti solárnych článkov aspoň o 30 percent. Vytvorili tiež materiál, ktorý môže zhromažďovať energiu zo slnečného žiarenia a uvoľniť ho v podobe tepla o niekoľko hodín či dní neskôr.

Zvýšenie účinnosti solárnych článkov

Cieľom výskumu vedcov z Massachusetts Institute of Technology (MIT) je dospieť k ľahším a účinnejším plochým solárnym článkom. V decembri 2015 odštartovali trojročný projekt s rozpočtom 3,5 milióna USD.

Chcú dosiahnuť zvýšenie celkovej účinnosti aspoň o 30 percent, čo je asi 5 percentuálnych bodov nad dosiaľ najlepšou účinnosťou dosiahnutou prostredníctvom technológie solárnych článkov z kryštalického kremíka. Konečným cieľom je dostať technológiu na trh.

„Sme na začiatku, pre spoluprácu hľadáme spoločnosti, ktoré by mali záujem nájsť spôsob, ako uviesť túto technológiu na trh po skončení financovanie tohto trojročného projektu,“ hovorí hlavný výskumník Jurgen Michel, vedúci vedecký pracovník MIT Microphotonics Center a odborný asistent na katedre materiálových vied a strojárenstva.

„Najlepším výsledkom pre nás bude, ak budeme mať solárny článok a firmy, ktoré sa jeho rozvoju budú ďalej venovať a budú ho skutočne aj vyrábať“.

Na základe predošlých výskumov sa budú vedci snažiť vyrobiť také solárne články, ktoré by dokázali pokryť celé spektrum slnečného svetla, a to či už priameho v rôznych denných časoch alebo vo fázach tienenia. Navrhovaný solárny systém pozostáva z palety článkov, ktoré by dokázali maximalizovať príjem svetla v rôznych denných hodinách a zaoberá sa tak jedným z kľúčových problémov solárnej energie, ktorou je jej prerušovaný charakter.

Postupom času je nasadzovaných čoraz viac solárnych systémov, s čím súvisí potreba ich integrácie so systémami určenými na akumuláciu energie. Týmito problémami sa zaoberá aj správa MIT Energy Initiative (MITEI), ktorá bola pod názvom „Budúcnosť solárnej energie“ vydaná v máji 2015. Bez skladovania sú solárne systémy použiteľné pre poskytovanie elektrickej energie len počas dňa.

„Solár“ má však v dlhodobom horizonte obrovský potenciál. Podľa zmienenej správy MITEI by po inštalácii solárnych systémov na menej ako 0,5 percenta územia kontinentálnych Spojených štátov bolo možné vyrábať toľko elektrickej energie, koľko krajina dnes spotrebuje. Taktiež by sa znížili emisie oxidu uhličitého.

Celý článok na: energie-portal.sk

Kategórie
Zo zahraničia

Mercom forecasts 57.4 GW of new solar capacity worldwide in 2015

Global solar installations will be in the 57.4 GW range in 2015, driven primarily by strong demand in China, Japan and the US, forecasts consulting firm Mercom Capital Group LLC. These three countries alone will be able to cover 60% of demand this year, with China likely reaching its recently revised target of 17.8 GW of new PV capacity for this year. Japan is expected to add approximately 10 GW of new PV power in 2015, while the US is expected to install approximately 8.8 GW of PV capacity. Germany, once a leading solar market, will add only 1.3 GW of PV systems this year. Mercom stressed that the auctions for large-scale PV projects recently held by the German grid operator Bundesnetzagentur, which were conceived as a cheaper alternative the FIT program, »turned out to be a slightly more expensive option.« © PHOTON

Kategórie
Zo zahraničia

What Happens to a PV-Powered Country During a Massive Solar Eclipse? We Find Out March 20th

The world’s most sun-powered nation is about to encounter an unusual complication: the moon.

When a solar eclipse sweeps across Europe on the morning of March 20th, the moon’s passage in front of the sun will cast a sudden and giant shadow across Germany — a country whose reliance on solar energy is, by international standards, astronomical.

Although Germany is no bigger than the state of Montana, it boasts more than a quarter of all the solar electric capacity installed on earth. Its 1.4 million solar energy systems produce nearly 7 percent of the nation’s electricity. (In the U.S., solar provides about 0.5 percent.) And during the sunniest hours of the year, photovoltaic systems have satisfied up to half of Germany’s power demand.

That raises an interesting question: when the moon blocks up to three-fourths of the sun shining on Germany later this month, how will electric utilities and the power grid respond?

To shed some light on the problem, we cracked open Opower’s energy data storehouse — the world’s largest, spanning more than 55 million households worldwide. Our findings highlight the fascinating challenges of a solar-powered energy future, and how new technology and innovative utility strategies will be essential to the operation of next-generation power grids.

Energy data from a recent solar eclipse in America

In October 2014, we caught a glimpse of how an eclipse can affect a region that’s teeming with solar panels: the Western United States.

The Western U.S. comprises several of the top solar states in America, and its sun-fueled energy portfolio continues to expand briskly, including large-scale solar arrays as well as customer rooftops.

So when a partial eclipse obstructed 30 percent to 50 percent of the sun on the afternoon of October 23rd, the Western power grid was significantly impacted. Utility-generated solar electricity production plunged between 1:45 p.m. and 4:30 p.m., before returning to a typical late-afternoon pattern.

Screen-Shot-2015-03-02-at-1.31.02-PM

Rooftop solar systems responded similarly. Electric usage data from a sample of 5,000 solar homes in Opower’s database shows that their shipment of excess power to the grid — indicated by negative electricity usage in the chart below — rapidly contracted during the eclipse. Solar customers exported 41 percent less electricity than usual between 1:45 p.m. and 4:30 p.m.

MAR-836_SolarEclipse_150227-01_600_504

Looking at the same data from a different angle, you clearly see the steep drop-off in electricity supply: solar homes’ export of power to the grid declined markedly faster than usual.

MAR-836_SolarEclipse_150227-02_600_504

How did the sudden drop-off in solar production affect the region’s power grid? In short, it required utilities and grid operators to fill in the gap.

The electric system relies on exact second-by-second balancing of demand and supply. To prevent grid instability and blackouts, sudden decreases in solar power (or any kind of power source) must be compensated by changes elsewhere in the system, like turning on other power plants, reducing electric demand, or discharging energy stored in batteries.

That’s precisely what happened in the Western U.S. during the October 23rd eclipse. At the peak of the eclipse, which took more than a 1,000-megawatt bite out of solar power supply, the region’s primary grid operator responded by dispatching an unusually large increase in thermal (likely gas-fired) electricity generation.

But what would happen if we were to raise the stakes, beyond our Western U.S. example? What if we tripled the amount of solar panels installed and doubled the severity of the eclipse?

For an answer, we look to Germany.

What to expect in Germany on March 20

Between 9:30 a.m. and noon on March 20th, Germany’s 1.4 million solar power systems are in for a wild ride.

In the span of 75 minutes, the moon will go from occluding 1 percent of the sun’s glow to 73 percent. Solar production will fall, and fall fast — up to 2.7 times faster than it normally ever does, according to an analysis by the University of Applied Sciences in Berlin. The effect is similar to turning off a medium-sized power plant in Germany every minute for a full hour.

The reverse is also true. As the moon recedes from blocking 73 percent of the sun to blocking none of it, solar power output could skyrocket by as much as 18 gigawatts in just over an hour — up to 3.5 times faster than usual. (Note that in the Western U.S. case study, this kind of rebound in solar production was largely immaterial, since the eclipse ended near sunset.)

MAR-836_SolarEclipse_150227-03_600_504

That said, there’s also a chance that the eclipse’s slingshot effect will be less severe than the chart above suggests. The ultimate outcome depends on cloud cover. If clouds are already blocking the morning sun, for instance, the eclipse will cause solar power production to dip from an already low level to a somewhat lower level than that, and then inch back up again.

While Germany’s eclipse is perfectly predictable, the weather on March 20th is not. That means utilities and grid operators have to prepare for the most extreme impact and the most dramatic ups and downs in solar power production.

How will they do it?

As in the Western U.S., managing the impact of the German eclipse will hinge on real-time flexibility in power grid operations. Fortunately, that’s something Germany is good at, as evidenced by its impressive reliability in operating a grid that gets 17 percent of its electricity from solar and wind.

When the eclipse hits and solar power supply starts to tumble, German energy providers and grid operators can respond with a combination of strategies — such as releasing energy stored behind hydroelectric dams, turning on quick-start natural gas power plants, or importing electricity from neighboring countries.

To complement those tactics, utilities could also modulate power demand — by encouraging their customers to avoid or delay electricity usage during the first half of the eclipse. This approach would resemble one that several American utilities deployed with Opower last summer to shave power demand by up to 5 percent.

Reciprocal strategies could be used when solar power quickly rebounds during the second half of the eclipse. Energy providers could store excess energy behind hydroelectric dams, ramp down gas power plants, exportelectricity to other countries, or help customers shift their electricity demand toward that time window.

Given the German power sector’s strong record of grid reliability and its strategic flexibility planning for March 20th, the country will likely navigate the day’s unique operational challenges without a hitch.

But in a future brimming with more solar power, one has to ask: could the situation posed by Germany’s solar eclipse become the norm, rather than the exception?

How March 20 foreshadows the future of utilities and the grid

The upcoming eclipse over Germany’s solar panels provides a sneak peek at a fascinating challenge facing tomorrow’s electric grid.

Namely, how can utilities and grid operators achieve the large-scale flexibility required to embrace an energy resource that, by its nature, rapidly turns on and off — whether predictably due to eclipses and sunrises/sunsets, or unpredictably due to clouds and weather?

The challenge Germany confronts on March 20th may actually become a daily occurrence within 15 years, according to a presentation by one of the country’s largest electric transmission operators. Assuming the German government achieves its target of 66 gigawatts of solar capacity, a clear-sky sunrise in 2030 could drive an increase in solar power supply as steep as the rebound phase of 2015’s eclipse.

Screen-Shot-2015-03-02-at-3.17.42-PM_600_258

Grid authorities are facing a similar future in renewable energy powerhouses like California, which is striving toward 33 percent renewable electricity by 2020. One oft-cited statewide scenario suggests that at sunset during some parts of the year, the sudden drop in solar power will necessitate an extremely brisk ramp-up of non-solar resources (labeled “net load” in the chart below) to compensate for the sun’s departure and, simultaneously, to meet the evening’s high electric demand.

Screen-Shot-2015-03-02-at-3.26.53-PM_600_413

As the electricity produced by renewables like solar and wind continues to grow, the grid will inevitably see larger swings in power production. That’s why flexibility measures like fast-ramping power plants, adjustments to customer energy behavior, dynamic power pricing, energy storage, and a range of other strategies represent a critical dimension of the power grid’s evolution to meet the needs of the 21st century.

As far as upcoming eclipses go, it’s not just Germany that will get to showcase the flexibility of its electric system. America’s increasingly sun-fueled grid will be forced to adapt to the moon’s shadow for multiple hours in 20172023, and 2024.

It will require ingenuity, but if we can put a man on the moon, innovative utilities will find ways to deal with the moon’s shadow. By doing so, they’ll be taking one small step toward creating the electric system of the future.

Methodology and technical notes

Utility service points analyzed are located within a common area of the Western United States bounded by a 200-mile radius. Usage statistics are per-household averages based on 15-minute-interval electricity consumption data measured on October 23, 2014.

Solar households (n=5,240) are defined as residential utility customers who possess an onsite renewable energy system that is bi-directionally interconnected with the electric grid, and which exported power to the grid on the day of the partial solar eclipse.

Projected electricity usage and exports are modeled using a quadratic polynomial function, to represent a baseline pattern under typical, non-eclipse conditions. The function corresponds to a trend line that symmetrically connects pre-eclipse negative usage values (9:00 a.m. – 1:45 p.m.) with the eclipse day’s terminal negative usage value (4:30 p.m.) – thereby constructing an approximation of baseline values for the eclipse period itself.

We portray Germany’s eclipse scenario as a tripling of solar panels relative to the Western U.S. This portrayal is based on data from the Solar Energy Industries Association, suggesting that cumulative installed solar electric capacity across California, Arizona, Nevada, Colorado, and New Mexico is approximately 12 gigawatts. Germany’s installed photovoltaic capacity is estimated to be greater than 38 gigawatts.

We compare the German eclipse’s first-half impact to turning off a medium-sized power plant in Germany every minute for a full hour. This comparison is based on the prediction that, given clear skies, the reduction in solar output in the first 60-75 minutes of eclipse will be between 6,000 and 11,300megawatts. Towards the lower end, this represents a change of ~100 megawatts per minute; the average size of a natural gas (“Erdgas”) power plant in Germany is also ~100 megawatts.

Kategórie
Zo zahraničia

Solar Power To Form 25% Of India’s Installed Power Capacity By 2022, Deutsche Bank Forecasts

A recently announced capacity addition target could make India one of the largest solar power markets in the world.

The Indian government formally confirmed the solar power capacity addition target for 2022 as 100 GW. The current installed solar power capacity stands at around 3 GW, or about a tenth of the total renewable energy capacity, and just over 1% of the total power capacity of the country.

As per the current plans and targets of the government, about 400 GW power generation capacity is expected to be operational in 2022, with 100 GW based on solar power.

The forecast has been made in a report published by Deutsche Bank, which suggests that the falling cost of generating solar power would help India achieve this very ambitious target.

Solar PV power feed-in tariffs have fallen to a third of what they were 5-6 years ago when the National Solar Mission was launched. The new government has divided the capacity addition targets among various stakeholders. Large-scale capacity will be auctioned to private project developers while state-owned entities have been asked to develop large solar power parks.

The central government has already identified about 2 dozen states where ultra mega solar power projects of capacity between 500 MW and 4 GW would be established. In addition to this, state governments will auction off several 100 megawatts independent of the central government auctions. The central government is expected to kick-off a long and sustained phase of solar power project auctions soon.

With a targeted installed solar power capacity of 100 GW by 2022 India will have to add 12 GW capacity every year.